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Coursework

|| Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and
projects.

Help from Your Peers

? Connect with thousands of other learners and debate ideas, discuss course material,
| and get help mastering concepts.

Certificates

& Earn official recognition for your work, and share your success with friends, colleagues,
and employers.

https://www.coursera.org/learn/machine-learning
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ARTIFICIAL
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MACHINE
LEARNING

DEEP
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1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/



“Field of study that gives computers the ability to
learn without being explicitly programmed.”

— Arthur Samuel (1959)



“A computer program is said to learn from
experience E with respect to some task T and some
performance measure P, if its performance on T, as

measured by P, improves with experience E.”

— Tom Mitchell (1998)



“A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E.”

Example: spam email classification based on user input
T: Classifying emails as spam/not spam
E. Users marking emails as spam/not spam

P: Number of emails correctly marked as spam
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Traditional programming
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Machine learning
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- Supervised learning
Computer is presented with example
inputs and their desired outputs and
the goal is to learn a general rule that
maps inputs to outputs

- Unsupervised learning
No labels are given to the learning
algorithm, leaving it on its own to find
structure in its input.




Supervised learning

- Linear regression
- Logistic regression
- Support Vector Machines

- Neural networks

Unsupervised learning

- K-means
- Anomaly detection
- Neural networks

- Recommender systems
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Profit in $10,000s
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Profit in $10,000s

Linear regression

hypotheses cost function gradient descent
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1 iteration

"% Training data
—— Linear regressicn
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10 iterations

"% Training data
—— Linear regressicn
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100 iterations

"% Training data
—— Linear regressicn
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1000 iterations

"% Training data
—— Linear regressicn
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2000 iterations

"% Training data
—— Linear regressicn
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10000 iterations

"% Training data
—— Linear regressicn
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Normal equation

o= (XTX) " X7y

- computed in one step

- slow if nis large

- need to compute inv(X’X) - very slow
- problem if X’X not invertible

- prune outliers

import org.apache.commons.math3. linear.x;

private RealVector linearRegression(List<BigDecimal> list)
{
double[] vector = new double[list.size()];
double[]l[] matrix = new double[list.size()]I[2]; _nT,.. _
// fill in vector and matrix hO(T) =0T = 90 T 91{171
RealMatrix X = MatrixUtils.createRealWMatrix(matrix);
RealVector y = MatrixUtils.createRealVector(vector);
return MatrixUtils
.inverse(X.transpose().multiply(X))
.multiply(X.transpose())
.operate(y);
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Logistic regression

hypotheses cost function
1 m . . . .
ho(z) = g(0" ) J(0) = — Z (=4 log(hg(z')) — (1 —y) log(1 — he(z'"))]
1 1=1
9(2) = 1+e*
7 one-vs-all
A A
A % . @, X
) AN xx X 00 x)( X
0.5 - | 2 X
o_X O
O nU OOO
> >
| | | | & Xl
-6 2 4 6 (i)
max h,’ (z)

(2) = 1 if2>0
I==30 ifz<0



[}
e
w
l_
a
-
o
2
-
=

0.3
Microchip Test 1




lambda = 1
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K-means

[®)

$ Initialize centroids

centroids = kMeansInitCentroids (X, K);

for iter = l:iterations

Cluster assignment step: Assign each data point to the
closest centroid. idx (i) corresponds to c¢” (i), the index
of the centroid assigned to example 1

idx = findClosestCentroids (X, centroids);

o® o° o\°

% Move centroid step: Compute means based on centroid
$ assignments
centroids = computeMeans (X, 1idx, K);

end

find closest centroids elbow method

) = 9 that minimizes ||$(i) — ,Uj||2v

compute means

1 .
- § : (2)
VR Xr

Sum of squared errors

1 2 3 4 5 6
Number of clusters (k)

7

10
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Figure 1

File Edit
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Neural network model

o) O(2)

+1

aV =z 22 =000 .6 =@2)g,?2
(add a},") a(2) = g(z(‘z)) a3 = g(:(.‘j)) _ hg(.’l.‘)
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Input Layer Hidden Layer Output Layer



Training a neural network

Randomly initialise the network weights and biases

For every piece of training data, feed it into the network

Check whether the network gets it right

If not, how wrong was it? Or, how right was it?

Nudge the weights a little to increase the probability of a correct answer
Repeat

o) o2)
Starting here
+1
E—
: hG(x) : .‘:."':-"«:":.4'.:._'..'.'.:'."-
......
0 = ()5 x g'(:?) 87 =a}” —y;

) We want to get .
(remove 8.°) to here .

Input Layer Hidden Layer Output Layer : : N _ S S, %‘

LOSS

Weights



50 iterations, 96.1% accuracy

[ NON Figure 1
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“Admiral Dog!" “The Pig-Snail” “The Camel-Bird" "The Dog-Fish"



Neural net “dreams”— generated purely from random noise, using a network trained on places by MIT Computer Science and Al
Laboratory. See our Inceptionism gallery for hi-res versions of the images above and more (Images marked “Places205-
GoogLeNet” were made using this network).



Model evaluation

20%

Test set Training set

K-fold Cross Validation

Test set Training set

Run k testing experiments
- pick testing set

- train

- test on testing set

Average test results



Debugging a learning algorithm

- Get more training examples

- Try smaller set of features

- Try getting additional features

- Try adding polynomial features

- Try decreasing regularisation parameter

- Try increasing regularisation parameter



1.Gathering data
2.Data preparation

3.Choosing a model

4. Training

5.Evaluation Repeat

6.Parameter tuning —

[ .Prediction



scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

get
more

data

NO

regression

YES

<100K

NO

YES samples

- -
predicting a ‘
ves | category
YES A
NO

do you have
labeled <100K ;

ves \ samples
predicting a :
quantity

NO data
just

few features
should be
important

NOT
WORKING

number of
YES VES categories

known
<10K
samples

NO

clustering

NO

YES samples
NO

NOT
WORKING

oT
WORKING

YES

10K ) ) :
= dimensionality
predicting .
reduction



https://www.coursera.org/learn/machine-learning

http://cs229.stanford.edu/syllabus.html

https://www.coursera.org/learn/neural-networks

https://www.coursera.org/specializations/deep-learning

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-
introduction-to-computational-thinking-and-data-science-fall-2016/

https://medium.com/manchester-futurists/demystifying-deep-neural-nets-efb726eae941

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

http://setosa.io/ev/

https://dataskeptic.com

http://lineardigressions.com
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